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[Nokia Networks: Looking ahead to 5G. White paper, April 2014]
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Current computational cost of transmission: approx. 6 nJ/bit 
[Andrews et al. 2014]


Current battery capacity 6.9 Wh (iPhone 6)


Target 10 Gbit/s

Resulting battery life: 5 minutes and 27 seconds!
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Quantum leap from 2G to 3G with the adoption of modern 
iteratively decodable codes (turbo codes, LDPC codes)


3G to 4G basically the same techniques, new: adoption of 
hybrid ARQ

In order to satisfy the 5G requirements, we need a paradigm 
change in coding.
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5

3G/4G coding is essentially capacity-approaching for point-to-
point BI-AWGN

Gains in transmission power efficiency to be expected from


‣ Coding for spectrally efficiency communication


‣ Multi-terminal coding and decoding (i.e., for relaying, cooperation, 
MIMO)

Gains in computational power efficiency equally important
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No single scheme which fixes all these issues, but few 
promising candidates:


Spatially coupled (convolutional) LDPC codes 

Non-binary LDPC codes 

Polar codes
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Spatially Coupled LDPC Codes

9

Invented as convolutional LDPC codes [Jiménez-Feltström & 
Zigangirov 1999], theory [Kudekar, Richardson, Urbanke 2010] 

Asymptotically universally capacity achieving for a wide range 
of channels and code rates

Same performance under belief propagation decoding as for 
the corresponding block LDPC ensembles under maximum 
likelihood decoding (threshold saturation)

Decoding complexity and latency reduction by windowed 
decoding
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[Costello, Dolecek, Fuja, Kliewer, Mitchell, Smarandache, 2014]
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Pipeline decoding:

Low-latency low-complexity windowed decoding:
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Random codes, N � 2350, R � 0.83
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[Amiri, Kliewer, Dolecek 2014]
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Polar Codes
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First constructive technique to provably achieve channel 
capacity with bounded complexity O(n log n) [Arikan 2009]

Closely related to Reed-Muller codes, constructed recursively 
via Kronecker products

Advantages for multi-terminal setups (e.g., broadcast channel 
[Mondelli et al. 2014])
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5G requirements: One code fits all?

Improving finite block length performance of polar codes

Non-binary SC-LDPC codes
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