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Energy Bottleneck

@ Current computational cost of transmission: approx. 6 nd/bit
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Energy Bottleneck

@ Current computational cost of transmission: approx. 6 nd/bit
[Andrews et al. 2014]

@ Current battery capacity 6.9 Wh (iPhone 6)

@ Target 10 Gbit/s

Resulting battery life: 5 minutes and 27 seconds!
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Coding for *G

@ Quantum leap from 2G to 3G with the adoption of modern
iteratively decodable codes (turbo codes, LDPC codes)

@ 3G to 4G basically the same techniques, new: adoption of
hybrid ARQ

In order to satisfy the 5G requirements, we need a paradigm
change in coding.
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Coding Wish List for 5G

@ 3G/4G coding is essentially capacity-approaching for point-to-
point BI-AWGN

@ Gains in transmission power efficiency to be expected from

» Coding for spectrally efficiency communication

» Multi-terminal coding and decoding (i.e., for relaying, cooperation,
MIMO)

@ Gains in computational power efficiency equally important



One Code Fits All?




Not Really...




Not Really...

No single scheme which fixes all these issues, but few
promising candidates:

@ Spatially coupled (convolutional) LDPC codes
@ Non-binary LDPC codes

& Polar codes



LDPC Block Codes
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Spatially Coupled LDPC Codes

@ |nvented as convolutional LDPC codes [Jiménez-Feltstrom &
Zigangirov 1999], theory [Kudekar, Richardson, Urbanke 2010]

@ Asymptotically universally capacity achieving for a wide range
of channels and code rates

@ Same performance under belief propagation decoding as for
the corresponding block LDPC ensembles under maximum
likelihood decoding (threshold saturation)

@ Decoding complexity and latency reduction by windowed
decoding
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Resulting Tanner graph:

Coupling construction via unwrapping:

Terminated Tanner graph:

(diagonal matrix
extension)

Convolutional code structure
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Spatially Coupled LDPC Codes: Performance
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Spatially Coupled LDPC Codes: Performance
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Spatially Coupled LDPC Codes: Efficient Decoding

Pipeline decoding:




Spatially Coupled LDPC Codes: Efficient Decoding

Pipeline decoding:

Low-latency low-complexity windowed decoding:

L L
0‘5‘5‘5‘ T e NARA
VOPPLY T T NNIPEY

e —
t=0




Non-Binary LDPC Codes

@ Code alphabet in GF(q), g > 2

@ Code alphabet can be equivalent to modulation alphabet
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@ Code alphabet can be equivalent to modulation alphabet

@ Better performance at low block lengths than binary codes
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Non-Binary LDPC Codes

@ Code alphabet in GF(q), g > 2

@ Code alphabet can be equivalent to modulation alphabet

@ Better performance at low block lengths than binary codes

e Decoding complexity O(g?) for belief propagation decoding,
but O(glog q)with FFT-based decoding [Declercq & Fossorier
2007]
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Non-Binary LDPC Codes: Performance

FER

Random codes, N ~ 2350, R ~ 0.83 QC codes, N ~ 1200, R ~ 0.8
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[Amiri, Kliewer, Dolecek 2014]
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Polar Codes

@ First constructive technique to provably achieve channel
capacity with bounded complexity O(n log n) [Arikan 2009]

@ Closely related to Reed-Muller codes, constructed recursively
via Kronecker products

@ Advantages for multi-terminal setups (e.g., broadcast channel
[Mondelli et al. 2014))



LEELCRAEVE

5G requirements: One code fits all?



Take Aways

5G requirements: One code fits all?

Corrl;gl\gxity Finite block-| Spectrally Sw?ﬁllﬁe—for
en-/decod. length perf. | efficient i
Binary SC-
LDPC @ X m =
codes = A
Non-binary
LDPC 1N ‘ . &
codes T Y
Polar
‘" |
codes — . " ‘




Take Aways

5G requirements: One code fits all?
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Open: @ Improving finite block length performance of polar codes
@ Non-binary SC-LDPC codes
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