

THE ELISHA YEGAL BAR-NESS CENTER FOR WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING RESEARCH

Visible-light Enhanced 5G System

Abdallah Khreishah ECE, NJIT March 24,2015

Spectrum Crunch

http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-vni/index.html

In 2015 70% of the video data is being requested from indoor locations

According to the Cisco Visual Networking Index, about 53% of the outdoor wireless data traffic is expected to be offloaded to WiFi in 2018

Energy Hungry Wireless Access

- In the US, IT energy consumption more than that for automotive industry.
- Wireless mobile infrastructure consumes half of this amount.
- With the exponsion

vireless traffic, the

Cellular Phones cause Cancer

- WHO classifies cell phones as a possible Carcinogen
- Cell phones same cancer risk categories as (Feb-2015)

- Cell phone companies started to recommended to health effects. to have their cell phones at a given distance from the body.
- http://www.phonescausebraincancer.com

A Unified Solution

VLC Frontends

 Developed in cooperation with Fraunhofer HHI and Boston University.

- Three colors RGB
- Lenses at the receiver
- Use OFDM for modula
- Offer a modulation ba careful impedance maturing between the high-power analog driver.

Hybrid System & Bonding

Hybrid System & Bonding

Joint lighting and power control (System Model)

- Hybrid System consisting of *K* RF and VLC hotspots.
- RF hotspots are characterized by:
 - P_on: Power consumption needed to turn it on
 - P_t: Power consumption required for transmission

System Model

- VLC hotspots are characterized by:
 - P_o: Optical power required to maintain certain level of illumination
 - P_t: Power consumption required for transmission
 - Depends on Efficiency η
 - Based on empirical results, efficiency decreases when data rate increases

$$\eta(R) = \frac{1}{aR+b}$$

Problem Formulation

$$X_k = \begin{cases} 1 & \text{if the } k\text{-th hotspot is on} \\ 0 & \text{otherwise.} \end{cases}$$

$$Y_{ki} = \begin{cases} 1 & \text{if the } i\text{-th user is connected to the } k\text{-th hotspot} \\ 0 & \text{otherwise.} \end{cases}$$

$$\min \sum_{k=1}^{K} P_k^{on} X_k + \sum_{k=1}^{K} \sum_{i=1}^{I} P_{ki} Y_{ki}$$

s.t

$$Y_{ki} \le X_k, \quad \forall i, k$$
 (1)

$$\sum_{k=1}^{K} Y_{ki} \ge 1 \quad \forall i \tag{2}$$

Problem Complexity

- Our Problem is NP-complete
- Reduction from the Set Cover problem

Online Algorithm

Add a virtual source connected to all hotspots.

• Notations:

n': Number of users seen so far

S: Virtual Source

 c_e : Cost of edge $e \in E$

 c_{tot} : Total cost incurred by the algorithm

 α : Guess of the optimal fractional solution

 w_e : Actual weight of each edge

 w_e : Virtual weight of each edge

Online Algorithm

Algorithm 1 Online Hybrid RF-VLC System

```
n'=0
\alpha = \min c_e
w_e = w'_e = \frac{1}{m^2}
c_{tot} = 0
Upon the arrival of a new user u
n' \leftarrow n' + 1
\forall e, choose \lceil 2 \ln(n'+1) \rceil independently random variables \Gamma(e,j), 1 \leq j \leq \lceil 2 \ln(n'+1) \rceil uniformly
distributed in the interval [0,1]. Set \gamma_e = \min_i \Gamma(e,j)
START:
\forall e \text{ such that } c_e \leq \frac{\alpha}{m}, \text{ set } w_e = w'_e = 1
\forall e \text{ such that } \frac{\alpha}{m} \leq \overset{\dots}{c_e} \leq \alpha, \text{ set } c_e' = \frac{c_e}{\alpha/m}
if the maximum flow between S and u is at least 1 then
   do nothing
else
    while the flow is less than 1 do
       Compute the minimum weight cut C between S and u
       \forall e \in \mathcal{C}, \ w'_e \leftarrow w'_e (1 + \frac{1}{c'})
       if w'_e \ge \gamma_e then w'_e = 1
   w_e = \max\{w_e, w_e'\}
    c_{tot} = \sum_{e} w_e c_e
    if c_{tot} > \alpha \mathcal{O}(\log(m)) then
       \alpha \leftarrow 2\alpha
```


Go to START

Performance Analysis

- Theorem: The online algorithm produces an integral solution that is $\mathcal{O}(\log(m)\log(n))$ competitive, and is feasible with probability $1 \frac{1}{n^2}$, where m is the number of hotspots, and n is the number of users.
- Theorem: The best competitive ratio (for the fractional case) achieved by any online algorithm is $\Omega(\log(m))$

Simulation Results

- Two Settings:
 - One big room, no windows
 - Multiple small rooms
- Schemes simulated:
 - Hybrid System
 - VLC only
 - RF only

Simulation Results

• One big room, no windows

Simulation Results
January 13

Multiple Small Rooms

Simulation Results

Multiple Small Rooms

Heinrich Hertz Institute

Thanks

Questions and feedback?

The Science and Technology University of New Jersey