Direct Methods
for
Geolocation
over

Multipath Channels

N. Garcia, A.M. Haimovich, J.A. Dabin and M. Coulon

TeSA

Telecommunications for Space and Aeronautics




At a Glance

» Goal: Localization (geolocation) of RF emitters in multipath
environments

» Challenges:
o Line-of-sight (LOS) paths
> Non-line-of-sight (NLOS) paths
- Blocked LOS paths (e.g. indoor)

» Applications:
> Cellular map services
- Defense applications
> Location based services
- E911




Problem Statement

Goal
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Estimate emitters locations

Assumptions
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Network of distributed sensors with fixed, known locations
Sensors have ideal communication with fusion center
Emitters’ waveforms and their timing are known
Synchronization

> Time synchronization between sensors and emitters

> No phase synchronization
Observation time << channel coherence time Y Y

“¥” Time-invariant multipath channel w
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No prior information on multipath channel
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Context - LTE Positioning Methods (l)

Assisted Global Navigation
Satellite System (A-GNSS)

Positioning

» Relies on TOA’s

Observed Time Difference of
Arrivals (OTDOA)

» Relies on TDOA’s

v The eNodeB assists the UE so it v" Faster than A-GNSS
can synchronize with the GNSS % Requires synchronization among
signals faster. base stations.
* Not more accurate than GNSS % Requires signals from at least 3
x Challenged in dense urban and eNodeB

indoor situations

x Challenged in dense urban and
indoor situations
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LTE Positioning Methods (lI)

Cell-ID-based Positioning Uplink TDOA (RAN)
v Connection needed to only a » Relies on TDOA’s
signle eNodeB » Uses uplink signals
* Very coarse accuracy v" Computation done in the

eNodeB'’s instead of the UE.

x Requires synchronization among
eNodeB'’s

x Challenged in dense urban and
indoor situations
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Cloud-RAN Positioning

» Future LTE releases may include Cloud Radio Access Network (Cloud-RAN
or C-RAN)

o Centralized processing architecture for cellular networks.
- Base stations downconvert signals and relay them to a fusion center.
v Improved uplink positioning accuracy compared to RAN?
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Cloud computing

» Localization over multipath channels still an open problem!



Signal Model

Signal at the [-th sensor:

Q Q
rn(n) = 2 b14Sq (t — Tl(pq)) + 2 bl(;l)sq (t — Tl(;n)) + n;(t)
q=1

Q emitters and L sensors
sq(t): the signal of the g-th emitter @L/

LOS parameters:
» b;,: complex amplitude of the LOS path between emitter g and
sensor [

b Tl(pq): propagation time from location p, to sensor [
NLOS parameters

b bl(;”): complex amplitude of the m-th NLOS path between emitter g
and sensor [
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. rl(;"): propagation time from location p, to sensor [




Indirect and Direct Localization

Estimate TOA’s Indirect localization
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Muiltipath: the Challenge

» Direct positioning determination (DPD) is
asymptotically optimal in the maximum @
likelihood sense for ideal LOS channels P

» DPD performs better than multilateration at é
low SNR

» DPD does not address localization in Q
multipath:

> Non-line-of-sight (NLOS) paths
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Ad-Hoc Multipath Mitigation Methods

Measure TOA of 15t
arrival (Lee 2002)

Mitigate/reject
contribution from
sensors with strong

NLOS (Chen 1999) » Works only for discrete

mp contributions
If LOS is blocked
& error

» Various metrics were
suggested

Single-bounce
geometric model
(Liberti,Rappaport 1996)

» NLOS signals bounce
only once

»  Known number of
reflectors

» Joint estimation of
reflectors and emitters
locations.
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Localization by Maximum Likelihood

ML estimation in white Gaussian noise
o Measurements
o Unknown parameters related to LOS paths
o Unknown parameters related to NLOS paths
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x Large unknown parameters pool
x Infeasible complexity

x Qverfitted solution even if problem could be solved
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1. Arelatively small number of sensors L

2. Possible multiple, but a small number of emitters that need to be
localized, Q<L

3. Alarge number of possible locations for the emitters G >> Q

0,0,... Possible emitter locations | \
— Emitter 1
? = Emitter 2
(((( )ﬁ\ |:|
N K4
T ~ X noise
.. .GG
|:| Transfer matrix |
Locations — Measurements
Measurements NL x GL ]
NL x 1 [ |

» Highly underdetermined system
» Unigque solution under sparsity assumption .
» Efficient algorithms — highly active area of research Q<<G




Proposed Approach

cont Phase 1 (local) Phase 2 (global)
Oa
Multipath mitigation Estimate emitter locations
» LOS path is first arrival » Emitters are sparse
Key info » MP paths are sparse » LOS paths orig_inate from
common location
» Multipath is local
» Estimate TOA’s :
f <fy..<1tr » Direct approach relies
and their amplitudes directly on observations
aq,az, ..., ar » Cloud-based
at each sensor. » Formulate and solve a
Exploit sparsit imizati
Procedure P P ; y convex optimization
»  Remove 2" and later problem
estimated arrivals from . Least number of sources
signals

T and NLOS that describe
£ (t) = () — z a;s(t — 1) the measured signals
=2



Summary of Proposed Approach

Multipath mitigation
» Sparse framework and convex optimization

Localization

» Sources locations found by solving a convex optimization problem
with the least number of sources and NLOS path that describe the
received signals

minimize: (# of sources) + (# of NLOS paths)

subject to: Error (Observed signals — estimated signals) <e

» € Is chosen according to the noise level



Simulation Scenario

» 10 MHz emitter (30 m ranging resolution)

» Multipath channel RMS delay spread is 500 ns (exponential profile,
Poisson arrivals)

» Search area: 200 x 200 m
» 5 base stations and 1 UE
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Probability of Correct Recovery vs. SNR

» Correct recovery if error smaller than 10 m
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Probability of Correct Recovery vs. Error

» Error normalized to 30 m
» SNR = 30 dB per observation window (100 samples and 5

sSensors)
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Prob. of Correct Recovery vs. Delay Spread

» SNR = 30 dB per observation window

Probability of correct recovery
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v Anovel approach for localization of emitters in multipath featuring:
v" Direct localization outperforms classical TOA indirect localization

v An approximation of ML formulation

v" + proposed framework captures additional information
v Sparse multipath
v LOS are first arrivals
v Sparse emitters
v LOS signals originate from a common emitter location
v Multipath is local

v"Does not require channel state information, such as power delay
profile

v Cloud-based
x Computationally more expensive than indirect techniques.



