Direct Methods for Geolocation over **Multipath Channels**

N. Garcia, A.M. Haimovich, J.A. Dabin and M. Coulon

At a Glance

- ▶ Goal: Localization (geolocation) of RF emitters in multipath environments
- ▶ Challenges:
	- Line-of-sight (LOS) paths
	- Non-line-of-sight (NLOS) paths
	- Blocked LOS paths (e.g. indoor)
- **Applications:**
	- Cellular map services
	- Defense applications
	- Location based services
	- E911

Goal

Estimate emitters locations

Assumptions

- Network of distributed sensors with fixed, known locations
- Sensors have ideal communication with fusion center
- Emitters' waveforms and their timing are known
- **Synchronization**
	- Time synchronization between sensors and emitters
	- No phase synchronization
- Observation time << channel coherence time **Follo** Time-invariant multipath channel
- No prior information on multipath channel

Context - LTE Positioning Methods (I)

Assisted Global Navigation Satellite System (A-GNSS) Positioning

Observed Time Difference of Arrivals (OTDOA)

- Relies on TOA's
- \checkmark The eNodeB assists the UE so it can synchronize with the GNSS signals faster.
- ***** Not more accurate than GNSS
- Challenged in dense urban and indoor situations
- Relies on TDOA's
- Faster than A-GNSS
- ***** Requires synchronization among base stations.
- Requires signals from at least 3 eNodeB
- Challenged in dense urban and indoor situations

LTE Positioning Methods (II)

Cell-ID-based Positioning Uplink TDOA (RAN)

- Connection needed to only a signle eNodeB
- Very coarse accuracy

- Relies on TDOA's
- Uses uplink signals
- \checkmark Computation done in the eNodeB's instead of the UE.
- ***** Requires synchronization among eNodeB's
- Challenged in dense urban and indoor situations

Cloud-RAN Positioning

- ▶ Future LTE releases may include Cloud Radio Access Network (Cloud-RAN or C-RAN)
	- Centralized processing architecture for cellular networks.
	- Base stations downconvert signals and relay them to a fusion center.
	- **Improved uplink positioning accuracy compared to RAN?**

• Localization over multipath channels still an open problem!

Signal Model

Signal at the l -th sensor:

$$
r_l(n) = \sum_{q=1}^Q b_{lq} s_q \left(t - \tau_l(p_q) \right) + \sum_{q=1}^Q \sum_{m=1}^{M_{lq}} b_{lq}^{(m)} s_q \left(t - \tau_{lq}^{(m)} \right) + n_l(t)
$$

- Q emitters and L sensors
- $s_q(t)$: the signal of the q -th emitter
- LOS parameters:
	- \rightarrow b_{lq} : complex amplitude of the LOS path between emitter q and sensor l
	- $\mathbf{r}_l(\mathbf{p}_q)$: propagation time from location \mathbf{p}_q to sensor l
- NLOS parameters
	- $b_{lq}^{(m)}$: complex amplitude of the m -th NLOS path between emitter q and sensor l

 $\longrightarrow \tau^{(m)}_{lq}$: propagation time from location \mathbf{p}_{q} to sensor l

Indirect and Direct Localization

Multipath: the Challenge

- Direct positioning determination (DPD) is asymptotically optimal in the maximum likelihood sense for ideal LOS channels
- DPD performs better than multilateration at low SNR
- DPD does not address localization in multipath:
	- Non-line-of-sight (NLOS) paths
	- Blocked LOS paths

Ad-Hoc Multipath Mitigation Methods

Mitigate/reject contribution from sensors with strong NLOS (Chen 1999)

 Various metrics were suggested

Measure TOA of 1st arrival (Lee 2002)

- Works only for discrete mp contributions
- If LOS is blocked

error

time

Single-bounce geometric model (Liberti,Rappaport 1996)

- NLOS signals bounce only once
- Known number of reflectors
- Joint estimation of reflectors and emitters locations.

Localization by Maximum Likelihood

ML estimation in white Gaussian noise

- Measurements
- Unknown parameters related to LOS paths
- Unknown parameters related to NLOS paths

$$
\min_{\substack{p_1,\ldots,p_Q\\b_{11},\ldots,b_{LQ}\\M_{11},\ldots,M_{LQ}\\b_{11},\ldots,b_{LQ}\\b_{11},\ldots,b_{LQ}\\b_{11},\ldots,b_{LQ}\\b_{11},\ldots,b_{LQ}\\b_{11},\ldots,b_{LQ}\\b_{12},\ldots,b_{LQ}\\b_{1
$$

- Large unknown parameters pool
- ***** Infeasible complexity
- Overfitted solution even if problem could be solved

Additional Information not Captured by ML

- 1. A relatively small number of sensors L
- 2. Possible multiple, but a small number of emitters that need to be localized, $Q < L$
- 3. A large number of possible locations for the emitters G >> Q

Proposed Approach

Summary of Proposed Approach

Multipath mitigation

▶ Sparse framework and convex optimization

Localization

 Sources locations found by solving **a convex optimization** problem with the least number of sources and NLOS path that *describe* the received signals

 $\left\{ \right.$ minimize: $(# of sources) + (# of NLOS paths)$ subject to: Error . Observed signals – estimated signals $\leq \epsilon$

 ϵ is chosen according to the noise level

Simulation Scenario

- ▶ 10 MHz emitter (30 m ranging resolution)
- Multipath channel RMS delay spread is 500 ns (exponential profile, Poisson arrivals)
- Search area: 200 x 200 m
- 5 base stations and 1 UE
- ▶ 100 samples/sensor

Correct recovery if error smaller than 10 m

- ▶ Error normalized to 30 m
- \triangleright SNR = 30 dB per observation window (100 samples and 5 sensors)

 \triangleright SNR = 30 dB per observation window

Summary

- A **novel approach** for localization of emitters in multipath featuring:
- **Direct localization** outperforms classical TOA indirect localization
- An approximation of **ML** formulation
- + proposed framework captures **additional information**
	- **Sparse** multipath
	- LOS are **first arrivals**
	- **Sparse** emitters
	- LOS signals originate from a **common** emitter location
	- Multipath is **local**
- **Does not require channel state information**, such as power delay profile
- **Cloud**-based
- **Computationally more expensive** than indirect techniques.