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[Cisco Systems Inc.: The zettabyte area. White paper, 2015]
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[Nokia Networks: Looking ahead to 5G. White paper, April 2014]
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Recent advantages in communication and information theory 
constitute promising approaches to leverage network gains


‣ network capacity


‣ cooperative and opportunistic communication


‣ improved multiple access techniques

In this talk: How to leverage network gains for both error 
correction and compression with modern graph based codes?
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Improvements for error correcting codes have been limited  
mostly to the point-to-point case


‣ Low-density parity check codes


‣ Spatially coupled codes


‣ Polar codes

Gains in transmission power efficiency to be expected from


‣ Coding for spectrally efficiency communication


‣ Multi-terminal coding and decoding (i.e., for relaying, cooperation, 
broadcast) Solution:


Nested Codes
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Partitioning into subcodes


Can be seen as structured linear binning schemes


Finite-field version of physical layer superposition codes

C�, � = 1, 2, . . . ,M
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Multiple access channels 


‣ data from each source node is encoded by a subcode C�

Broadcast channels


‣ Each destination node decodes a subset of subcodes


‣ type-1 nested polar codes achieve best known inner bound 
[Marton 1979], but with insufficient finite block length scaling

C�

Interference channels 


‣ e.g., scheme from [Han & Kobayashi 1981], 2-user channel: 
message split up in public and private part (codes                ) C1 and C2

Many more: relay channels, cooperative diversity, wiretap 
channels, …
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Consider  k by n generator matrix G of linear code 


M information words ik


Type-1 codes: Partitioning of G into subcodes     with 
generator      and rate 

Nested Codes 
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c = [i1, i2, . . . , iM]G = [i1, i2, . . . , iM]

�

����

G1
G2
...

GM

�

����

C�

R� = k�/nG�

C

Type-2 codes: Partitioning of parity check matrix H           
into subcodes      with parity check matrix C� H�

�

����

H1
H2
...
HM

�

����

� �� �
=H



LDPC Block Codes

9

Uncoded BPSK

B
it 

er
ro

r p
ro

ba
bi

lit
y

Sh
an

no
n 

lim
it

(dB)

Irregular LDPC-BC

Regular LDPC-BC

Error floor

Waterfall



LDPC Block Codes

9

Uncoded BPSK

B
it 

er
ro

r p
ro

ba
bi

lit
y

Sh
an

no
n 

lim
it

(dB)

Irregular LDPC-BC

Regular LDPC-BC

Error floor

Waterfall

1 0
0 1 1 0 
1 1 0 1 1 1
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1 0 0 1 0 1 0 1 1 1
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1 1
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H =

Tanner graph (3,6) regular LDPC code:

Graph sparsely connected
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Coupling construction via unwrapping:

Convolutional code structure

[Costello, Dolecek, Fuja, Kliewer, Mitchell, Smarandache, 2014]
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How can we build good nested codes with

spatially coupled LDPC codes?
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t=2 t=L
(a) (b)

t=L-1

Protograph representation of a type-1 nested spatially coupled LDPC code 
ensemble for M=2
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Example: Distributed fronthaul compression for cloud radio access 
networks (CRANs) in 5G 

[Park, Simeone, Sahin, Shamai, 2014]
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Little attention has been paid so far on how data compression 
can reduce the network traffic


Practical network based compression approaches virtually 
unknown

In the following: Lossy compression based on spatially 
coupled low-density generator matrix (LDGM) codes


‣ Low encoding and decoding complexity (linear in time)


‣ Performance very close to the rate-distortion limit
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Idea: Treat source sequence as noisy codeword from some 
fictitious channel code (here a spatially coupled LDGM code)

Source encoding via modified belief propagation algorithm 
(channel decoding), windowed encoding for low latency

Source decoding via channel encoding



Coupling of Low-Density Generator Matrix Codes

17

(b) SC-LDGM code: time  t (c) SC-LDGM code: time t + 1

encoded
    bits

(a) LDGM-BC

z

s2

s1 s3 s5

s4 s6

1 z3z2

W = 3 W = 3
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Leveraging network gains in canonical multi terminal 
problems by nested SC-LDPC codes 

‣ relaying, broadcast, and cooperative diversity scenarios


Low-complexity lossy and lossless compression with SC-
LDGM codes

Example applications which can benefit from network 
compression gains: 

‣ Distributed compression for CRANs in 5G


‣ Distributed compression of phasor measurement units in wide 
area measurement systems 


Open: 

‣ Communication problem: Design of nested codes for M>2


‣ Compression problem: Design of nested codes and universal 
codes
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