New Jersey’s Science &
Technology University

Coding for Leveraging Network Gains in 5G

Jorg Kliewer

The Elisha Yegal Bar-Ness Center For Wireless
Communications And Signal Processing Research




The Zettabyte Area
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How Can Cellular Systems Keep Up?
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@ Recent advantages in communication and information theory
constitute promising approaches to leverage network gains

» network capacity

» cooperative and opportunistic communication

» Improved multiple access technigues

In this talk: How to leverage network gains for both error

correction and compression with modern graph based codes?
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Nested Codes

@ Partitioning into subcodes Cy, ¢ =1,2,..., M
@ (Can be seen as structured linear binning schemes

@ Finite-field version of physical layer superposition codes
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Applications for Multiterminal Communication

@ Multiple access channels

» data from each source node is encoded by a subcode C;

® Broadcast channels

» Each destination node decodes a subset of subcodes C;

» type-1 nested polar codes achieve best known inner bound
[Marton 1979], but with insufficient finite block length scaling

® Interference channels

» e.g., scheme from [Han & Kobayashi 1981], 2-user channel:
message split up in public and private part (codes C1 and Cy)

@ Many more: relay channels, cooperative diversity, wiretap
channels, ...
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Nested Codes

@ Consider k by n generator matrix G of linear code C
@ M information words ik

@ Type-1 codes: Partitioning of G into subcodes C, with
generator G, and rate R, = k;/n

"G
- - = - = = G2
Cc =iy, Ip, ...,iy] G = i1, i2, ..., iyl :
G
@ Type-2 codes: Partitioning of parity check matrix H :1
into subcodes C, with parity check matrix H, N
Hy
LA



LDPC Block Codes
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Resulting Tanner graph:

Coupling construction via unwrapping:

(diagonal matrix
extension)

(cut-and-paste)

Convolutional code structure
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Spatially Coupled LDPC Codes

Coupling construction via unwrapping: Resulting Tanner graph:

+ (cut-and-paste)

(diagonal matrix
extension)

Convolutional code structure

[Costello, Dolecek, Fuja, Kliewer, Mitchell, Smarandache, 2014]
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Spatially Coupled LDPC Codes: Performance
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Spatially Coupled LDPC Codes: Performance
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How can we build good nested codes with

spatially coupled LDPC codes?




Nested Spatially Coupled LDPC Codes

Protograph representation of a type-1 nested spatially coupled LDPC code
ensemble for M=2
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Network Gains From Data Compression

Example: Distributed fronthaul compression for cloud radio access
networks (CRANS) in 5G

[Park, Simeone, Sahin, Shamai, 2014
14
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@ Little attention has been paid so far on how data compression
can reduce the network traffic

@ Practical network based compression approaches virtually
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Network Gains From Data Compression

@ Little attention has been paid so far on how data compression
can reduce the network traffic

@ Practical network based compression approaches virtually
unknown

@ In the following: Lossy compression based on spatially
coupled low-density generator matrix (LDGM) codes

» Low encoding and decoding complexity (linear in time)

» Performance very close to the rate-distortion limit
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Source Compression with Channel Codes

@ Idea: Treat source sequence as noisy codeword from some
fictitious channel code (here a spatially coupled LDGM code)

@ Source encoding via modified belief propagation algorithm
(channel decoding), windowed encoding for low latency

@ Source decoding via channel encoding



Coupling of Low-Density Generator Matrix Codes

ANANN

(a) LDGM-BC (b) SC-LDGM code: time ¢ (¢) SC-LDGM code: time t + 1



Results: Symmetric Bernoulli Source

Deviation from RD limit

Latency (x1024 )



Results: Symmetric Bernoulli Source
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LELCYAVEVE

@ Leveraging network gains in canonical multi terminal
problems by nested SC-LDPC codes

» relaying, broadcast, and cooperative diversity scenarios

@ Low-complexity lossy and lossless compression with SC-
LDGM codes
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Take Aways

@ Leveraging network gains in canonical multi terminal
problems by nested SC-LDPC codes

» relaying, broadcast, and cooperative diversity scenarios

@ Low-complexity lossy and lossless compression with SC-
LDGM codes

@ Example applications which can benefit from network
compression gains:

» Distributed compression for CRANs in 5G

» Distributed compression of phasor measurement units in wide
area measurement systems

@ Open:
» Communication problem: Design of nested codes for M>2

» Compression problem: Design of nested codes and universal
codes
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Follow Up...

@ A. Golmohammadi, D. Mitchell, J. Kliewer, D. J. Costello: Windowed encoding of
spatially coupled LDGM codes for lossy source compression, Submitted to /ISIT 20176.

@ Y.-C. Liang, S. Rini, J. Kliewer: On the design of LDPC codes for joint decoding over the
multiple access channel, Submitted to /ITW 20176.

o E.EnGad,Y.Li J. Kliewer, M. Langberg, A. Jiang, J. Bruck, Asymmetric error
correction and flash-memory rewriting using polar codes, IEEE Trans. Information
Theory, 2016, to be published.

@ D. J. Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell, R. Smarandache:
Spatially coupled codes on graphs: Theory and practice, [EEE Communications
Magazine, July 2014.

o B. Amiri, J. Kliewer, L. Dolecek: Analysis and enumeration of absorbing sets for non-
binary graph-based codes. IEEE Trans. Commun., February 2014.

@ V. Rahti, M. Andersson, R. Thobaben, J. Kliewer, M. Skoglund: Performance analysis
and design of two edge type LDPC codes for the BEC wiretap channel, IEEE Trans. Inf.
Theory, February 2013.

o C. A Kelley, J. Kliewer: Algebraic constructions of graph-based nested codes from
protographs. Proc. IEEE Int. Symp. on Information Theory, June 2010

@ L. Xiao, T. E. Fuja, J. Kliewer, D. J. Costello, Jr.: A network coding approach to
cooperative diversity. IEEE Trans. Inf. Theory, October 2007.
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