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Abstract

DNA oxidation causes a variety of diseases including cancer. The oxidized DNA nucleobases are excised by cellular repair enzymes and
released into extracellular fluids. Specifically, the excised DNA oxidation product, such as 8-oxoGua, has been suggested as a biomarker for early
cancer diagnosis.We previously developed an artificial receptor for the free base of 8-oxoGua on a triplex DNA backbone. The receptor contained
a pre-organized cavity, which bounded 8-oxoGuawith strong affinity and excellent selectivity over other nucleobases.However, accurate detection
of 8-oxoGua in urine samples was affected by the presence of a large excess of guanine. Herein, we report a strategy to convert our receptor to a
colorimetric biosensor by conjugating DNA strands to gold nanoparticles (GNP), specifically for 8-oxoGua. By simply incubating our sensor with
a urine sample, 8-oxoGua can be detected at submicromolar concentrations with UV–vis spectrometer or even by naked eye.
© 2016 Published by Elsevier Inc.
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ETriplex DNA containing single-nucleotide gaps has been

used as the molecular skeleton to design synthetic receptors for
small nucleobase and nucleoside targets.1-5 Strong and highly
selective binding has been achieved by engineering the cavity to
create complementary binding surfaces. The targets are sand-
wiched by the flanking nucleobases through π-π stacking
interactions, and simultaneously by the pairing bases through
Watson–Crick and Hoogsteen hydrogen bonding interactions.
The DNA sandwich systems can be used as artificial sensors for
the detection of biologically important small molecules such as
excised DNA oxidation product 8-oxo-7, 8-dihydroguanine
(8-oxoGua). 8-OxoGua is an oxidized form of guanine where
its source in extracellular fluid comes from the enzymatic repair
of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG) in DNA.
As such, 8-oxoGua was viewed as a urinary DNA oxidative
damage biomarker for early cancer stage diagnosis.6 The current
8-oxoGua detection methods include gas chromatography/liquid
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chromatography–mass spectrometry (GC/LC–MS), LC–
electrochemical detection, and competitive enzyme-linked
immunosorbent assays (ELISA).7-10

A triplex DNA receptor approach for 8-oxoGua detection has
also been developed.2 Pyrrolo-C, a fluorescent cytosine
analogue, was incorporated to the receptor as the signal reporter.
Addition of 8-oxoGua caused remarkable fluorescence quench-
ing in which the change of fluorescent intensity can be monitored
by a fluorimeter. The detection range of the sensors was
3 nM-1 μM, comparable with the commercial immunoassay kit
from Trevigen, which non-selectively detects 8-oxoGua and its
2′-deoxyribonucleosides and ribonucleosides.7,8 While the
ELISA kits cross-react with urea in urine samples11 detection
with fluorescence sensors is less affected. However, the
fluorescence sensors overestimate 8-oxoGua concentrations by
1.5-2.0 folds as a result of the interference from urinary guanine,
whereas urine typically contains 13 times higher concentration of
guanine than 8-oxoGua.2 Additionally, fluorescent dyes in
general suffer from photobleaching. Hence, a more reliable
method that completely distinguishes 8-oxoGua from guanine is
highly desirable. Herein we report a simple, fast and low-cost
colorimetric method to measure 8-oxoGua concentration using
DNA modified gold nanoparticle as sensing probes, which
f DNA oxidation biomarker using gold nanoparticle/triplex DNA conjugates.
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Figure 1. Schematic illustration of DNA-GNP based colorimetric sensor for 8-oxoGua detection.

Figure 2. (A) Melting curves of GNP-free triplex or duplex DNA monitored at 260 nm. (B) Melting curves of GNP aggregates in the presence of different
concentrations of 8-oxoGua. (C) Plot of absorption ratio (A650/A520) vs. different concentrations of 8-oxoGua at 41 °C. (D)Melting curves of GNP aggregates
at a lower GNP concentration. (More details in supporting materials.)
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enables the detection of 8-oxoGua by UV–vis spectrometer or
even naked eye in a high-throughput fashion.

DNA modified Au nanoparticles have been widely used
for assembly,1,12,13 sensing,1,14-17 bio-imaging,1,18 and drug
delivery.1,19,20 Conjugation of nucleic acids to Au nanoparticle
allows convenient modification of the nanoparticle surfaces and
precise control of the particle aggregation through DNA
hybridization. DNA Au NPs have high extinction coefficients
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Table 1t1:1

Melting temperatures in different conditions [a].t1:2

t1:3 Entry [GNP-DNA] (nM) [8-oxoGua] (nM) Tm (°C)[b]

t1:4 1 2 0 40.0
t1:5 2 2 400 42.0
t1:6 3 2 800 43.9
t1:7 4 2 1600 46.0
t1:8 5 1 0 40.1
t1:9 6 1 400 44.0
t1:10 7[c] 1 0 41.0
t1:11 8[c] 1 400 43.0

[a] Buffer conditions: PBS, 10 mM, PIPES, 100 mM, additional NaCl,
100 mM, MgCl2, 10 mM, SDS, 0.1% wt, pH 5.7. [b] Average of the three
measurements. [c] Urine mimic was added 2 h after the hybridization.t1:12

Figure 3. Colorimetric assays of GNP-DNA aggregates after incubation
(A) under 40 °C for 2 minutes in presence of different nucleobases (B)
under different temperatures in presence of different concentrations of
8-oxoGua. (More details in supporting materials.)
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(about four orders of magnitude greater than typical organic
dyes), sharp melting transition and unique distance-dependent
plasmonic properties.21 These unique properties allow us to
build a GNP-linked triplex receptor (Figure 1) to selectively
detect 8-oxoGua in the presence of guanine. The two
pyrimidine-rich strands of the receptor were conjugated to
GNPs via 3′-thiol modification. These two strands are
non-complementary and thus do not interact with each other.
The purine-rich strand, which contained three C3 spacers,
functioned as a linker to induce GNP aggregation. The purpose
of using three C3 spacers was to amplify the stabilization effect
caused by the binding of 8-oxoGua. The same triplex DNA in the
absence of GNPs does not show clear triplex-to-duplex transition
in a UV melting experiment above 20 °C (Figure 2, A),
indicating the three C3 spacers separated by two -AAA- regions
greatly destabilize the triplex formation. It is noteworthy to
mention that binding of guanine to the cavities is likely to occur
without the participation of the parallel pyrimidine-rich region.
Therefore, urinary guanine was not expected to affect the melting
of aggregated GNPs and the resulting purple-to-red color change.

We first examined the relationship between the concentra-
tions of 8-oxoGua or guanine and the thermal stability of the
triple helix. The thermal stability was determined through a
series of UV–vis melting experiments monitored at wavelength
of 520 nm. The samples of the experiments were prepared by
hybridizing the two GNP-DNA conjugates (2 nM each) and the
linker in the presence of 8-oxoGua. A sharp melting transition
was observed in each experiment (Figure 2, B), indicating a
cooperative dissociation of GNP aggregates (Figure S1) and
formation of well-suspended red nanoparticles. The stabilization
effect was concentration-dependent. Within the 8-oxoGua
concentration range of 400 nM-1600 nM, each doubling of the
concentration increased the melting temperature by approximately
2 °C (Table 1). These sharp melting transitions allow relatively
wide temperature windows to distinguish two samples with
different 8-oxoGua concentrations.

After the temperature windows for detection were established,
we then carried out the in situ colorimetric assays. The goal of the
colorimetric assays was to detect target molecules in biological
samples conveniently, economically, and rapidly. When the same
GNP aggregates were incubated with 8-oxoGua, adenine, guanine,
cytosine, and thymine (400 nM each) at 40 °C for 2 min, only the
sample containing 8-oxoGua remained pink (Figure 3,A), whereas
the control sample turned red. This observationwas consistentwith
the visible spectrum of the GNP suspension, which showed
significant blue shift when 8-oxoGua was added. (Figure S2).
Notably, the samples in the presence of other potential interfering
species also turned red. This experiment demonstrated that our
assay could effectively discriminate between 8-oxoGua and other
nucleobases. The same assay was used to qualitatively examine the
concentration of 8-oxoGua (Figure 3, B). As expected, the
8-oxoGua-free sample melted and turned red at 40 °C, while the
other samples containing 8-oxoGua (400-1600 nM) remained
pink. At 42 °C, the sample containing 400 nM 8-oxoGua turned
red.At 44 °C, the sample containing 800 nM8-oxoGua also turned
red. The only sample that remained pinkwas in the presence of 1600 nM
8-oxoGua.Thesecolorimetricperformancesof theGNPaggregatesunder
mild heatingwere consistent with the aboveUV–vismelting results. The
sensor may be used for a wide range of different applications since
the threshold of detection was temperature-dependent.

The ratio of absorbance at two wavelengths (A650/A520)
recorded on a UV–vis spectrometer was plotted against
8-oxoGua concentrations to generate an 8-oxoGua response
curve. This curve may be used to quantitatively determine the
concentration of 8-oxoGua in an unknown sample (Figure 2, C).
The limit of detection using the spectrometer was determined to
be 128 nM. Although the detection limit was higher than that of
our previous fluorescent sensor, the response range still covers a
major portion of the biologically relevant concentration range.
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Figure 4. Melting curves of GNP-DNA aggregates in urine mimic. (More
details in supporting materials.)
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We then examined the possibility of further promoting the
sensitivity by lowering the amount of GNP aggregates in the
assay. Binding of 8-oxoGua to the three consecutive cavities of
each triplex was very likely to be positively cooperative due to
the effect of binding-induced preorganization. 200 nM of
8-oxoGua would only be able to bind one of the three cavities
in each receptor with a weak binding constant. By lowering the
GNP concentration from 2 nM to 1 nM, the same amount of
8-oxoGua was expected to occupy a larger portion of the cavities
with a stronger binding constant, thereby generating a more
dramatic helical stabilization effect. Certainly, the melting
temperature difference was 4 °C when 400 nM 8-oxoGua was
added to 1 nM GNP aggregates (Figure 2,D, Table 1), compared
to 2 °C when the same amount of 8-oxoGua was added to 2 nM
GNP aggregates.

To demonstrate that our colorimetric assays can be used
practically for urinary detection of 8-oxoGua, and in particular to
overcome the influence of the coexisting highly concentrated
nucleobases, we performed the melting study and the colorimet-
ric assay in the presence of a urine mimic containing 100 mM
urea, 4 μM adenine, 0.4 μM cytosine, 1.2 μM guanine, and
6 μM uracil.22 The urine mimic sample with and without
400 nM 8-oxoGua was incubated with GNP aggregates (1 nM)
at room temperature for 2 h. Melting experiment results showed
that the unspiked sample melted at 41 °C (Figure 4, A), which
was slightly higher than the melting temperature in the absence
of the urine mimic (40 °C). This difference is likely to be caused
by non-specific binding of nucleobases in urine. The melting
temperature of the spiked sample increased to 43 °C, suggesting
that 8-oxoGua can compete with the non-specific binding and
induce a larger stabilization effect. The colorimetric assay
showed a clear red versus pink difference when comparing the
unspiked and spiked samples, which is consistent with the results
of the melting experiments (Figure 4, B).

Although many methods have been reported to quantify
8-oxoGua concentrations in urine, the absolute amount of
8-oxoGua in concentration units or nmol/24 h has been reported
on only limited occasions. The reported average 8-oxoGua
concentrations ranged from 90 to 580 nM.9,10,23 A major
advantage of our sensor, in addition to its specificity, is the
detection range in which it can be tuned by using different GNP
F

concentrations and incubation temperatures. Therefore, a
protocol for each specific application can be generated to meet
the clinical demand for 8-oxoGua quantification.

In summary, assembling of multi-gapped triplex receptors
was facilitated by conjugation of the two pyrimidine-rich DNA
strands to gold nanoparticles. Target molecules such as
8-oxoGua can enter the triplex cavities and stabilize the pink
aggregates. The presence of multiple binding cavities has
enhanced the binding-induced stabilization effect and widened
the temperature window used for detection. The triplex-specific
melting process enhanced the detection selectivity for 8-oxoGua
over guanine, a commonly known interfering species. For the
first time, 8-oxoGua can be directly detected at sub-micromolar
concentrations without using a major instrument. This methodology
may become a universal solution to the detection of nucleobases and
nucleosides in biological fluids.
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OAppendix A. Supplementary data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.nano.2016.05.011.
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