Integrated Global-Sun Model of Magnetic Flux Emergence and Transport
The proposal is a part of a large collaborative project led by Dr Nagi Mansour (NASA).
The proposed effort of the NJIT in collaboration with Stanford helioseismology group will be focused on the development of helioseismology data analysis methods, helioseismology modeling and data assimilation for providing robust observational data and their interpretation for these objectives.
This project includes the following tasks:
A. Detailed analysis of the cross-correlation function of solar oscillations for optimal detection of the emerging flux signal, development of a fast optimal measurement scheme and travel-time fitting method, investigation of systematic and random errors;
B. Statistical analysis of the emerging flux signals, determination of the emergence detection criteria and threshold, characterization of the emerging flux data in terms of the travel-time anomaly strength, spatial and temporal behavior, distortion of the cross-correlation function, and also in terms of the relationship to the structure, evolution and activity of magnetic region after the mergence;
C. Development of numerical MHD simulations of helioseismology data for realistic models of emerging magnetic flux (including variation of the thermodynamic parameters, magnetic field and associated plasma flows), validation and testing the helioseismology data analysis procedures and codes using the numerical simulation data;
D. Investigation of the relationship between the helioseismology results and emerging flux properties for constraining the models of emerging flux and determining the model state for mathematical data assimilation methods;
E. Improvement of far-side imaging technique by implementing and optimizing the time-distance helioseismology method; verification and testing of the far imaging by using the numerical MHD simulations; comparison with the traditional holography technique;
F. Characterization of the subsurface flow maps in terms of the magnetic flux transport, comparison with the surface flux transport data from correlation tracking analysis of magnetic features; determination of the meridional circulation and zonal flows; investigation of systematic and random errors and providing the flow data for the global MHD flux transport modeling.
Alexander Kosovichev
Andrey Stejko